Die perfekte Größe der Solarbatterie bestimmen
Die Aufgabe eines Batteriespeichers liegt darin, den Solarstrom am Tage für den Verbrauch am Abend und in der Nacht zu speichern. Richtig dimensioniert ist die Batterie also dann, wenn sie den durchschnittlichen Stromverbrauch zwischen abends und morgens abdeckt. Um die persönlich richtige Bemessungsgröße zu bestimmen, ist es wichtig, die von den Herstellern aufgeführten Werte und die weiteren Einflussfaktoren zu kennen. Ein Richtwert ist zweifellos eine wertvolle Hilfe.
Solaranlage-Konfigurator:
Jetzt Ihre Solaranlage konfigurieren und unverbindliche Angebote erhalten!
Verschiedene Kapazitäten
Dies ist allgemein bekannt: Je höher die Entladetiefe einer Solarbatterie ist, desto besser kann die vorgehaltene Kapazität genutzt werden. Doch welche Kapazität ist entscheidend?
- Nennkapazität: Diese technische Speicherkapazität (oder Bruttokapazität) gibt an, wie viel Strom die Batterie mit einer vollen Aufladung speichern kann. Sie wird in kWh angegeben und muss aus dem Datenblatt des Herstellers hervorgehen.
- Batteriekapazität: Diese nutzbare Speicherkapazität (oder Nettokapazität) ist für Anlagenbetreiber der interessantere Wert. Er berücksichtigt auch die mögliche Entladetiefe. Liegt diese bei 90 Prozent, können folglich 90 Prozent der Nennkapazität genutzt werden.
- Nominelle Kapazität:
Der Wert bezeichnet die Energie, die bei einer definierten Entladedauer entnommen werden kann. Oder anders: Die Laderate C, auch C-Rate, gibt an, in welcher Zeit der Speicher wieder vollständig aufgeladen werden kann. Die Stunden werden als tiefgestellte Zahl angezeigt, z.B. C5, oder als Faktor zu 1, hier 0,2 C. Je niedriger der erste Wert ist bzw. je höher der zweite, desto schneller wird die Batterie geladen oder entladen.
Effizienz des Speichersystems
Verluste, die sich bei jedem Speichersystem ergeben, müssen für die Bestimmung der optimalen Speichergröße ebenfalls berücksichtigt werden. Da sie in unterschiedlichen Abhängigkeiten stehen, sind sie jedoch noch ohne weiteres ermittelbar (und selten in den Datenblättern der Hersteller verzeichnet):
- Dimensionierungsverluste: Die Leistungsbegrenzung der einzelnen Systemkomponenten – wie Wechselrichter und Batteriespeicher – kann den Energiedurchsatz beeinträchtigen.
- Umwandlungsverluste: Der Umwandlungswirkungsgrad hängt von der Art des Kopplungssystems (DC-DC oder DC-AC) ab. Je mehr Umwandlungswege vorliegen, desto größer sind die Verluste. Am effektivsten sind Speichersysteme mit DC-Kopplung .
- Regelungsverluste: Im Zuge des Eigenstromverbrauchs entsteht eine zeitliche Verzögerung zwischen der Zuschaltung des Geräts und der tatsächlichen Entladung des Energiespeichers zwischen 5 und über 60 Sekunden. Die Leistungsdifferenz wird dann durch einen Strombezug aus dem Netz ausgeglichen.
- Bereitschaftsverluste: Die Leistungsaufnahme im Standby-Betrieb versorgt unter anderem die Steuerungselektronik und das Kommunikationsmodul. In Summe können sich jährlich etwa 100 kWh an Standby-Verlusten ergeben.
Die Speicherkapazität auf den Bedarf abstimmen
Die optimale Speichergröße richtet sich natürlich vorrangig nach dem Energieverbrauch im Haushalt. Als Richtwert gilt: Pro 1.000 kWh Jahresverbrauch sollte der Speicher eine Batteriekapazität von 1 kWh aufweisen. Bei einem Einfamilienhaus mit 4 Bewohnern und 4.000 kWh Jahresstromverbrauch käme man also auf eine Nettokapazität von 4,0 kWh. In Abhängigkeit von der Entladetiefe würde die Bruttokapazität rund 4,5 kWh betragen. Zieht man zusätzlich die beschriebenen Verluste in Betracht, ist es sinnvoll, die Nennkapazität noch etwas nach oben zu korrigieren.
Doch Vorsicht: In der Praxis werden häufig viel zu große Speicher installiert. Dies führt dazu, dass der Ladezustand der Batterie häufig die 50-Prozent-Marke nicht unterschreitet – was die Alterung der Batterie beschleunigt. Dem unwesentlich höheren Autarkiegrad stehen zudem ein höherer Anschaffungspreis und die Verschwendung von Rohstoffen und Ressourcen bei der Produktion gegenüber.
Fachlichen Rat einholen
Die Hochschule für Technik und Wirtschaft Berlin htw gibt seit 2018 jährlich eine Stromspeicher-Inspektion heraus. Die Studie ermittelt die Effizienz von Speichersystemen. Die Rankings ersetzen mittlerweile die anfängliche Eingliederung in Effizienzklassen. Regelmäßige Testsieger kommen aus den Häusern RCT Power und Fronius. Hervorragend schneiden in der Regel auch die Solarstromspeicher von Energy Depot, Kostal und BYD ab. Geprüft und ausgewertet werden alle bisher angesprochenen Faktoren.
Die htw-Studie ist auf der Seite https://pvspeicher.htw-berlin.de/ kostenfrei downloadbar.
Die Ergebnisse der jeweils aktuellen Studie stellen wir detailliert in unserem Beitrag
Stromspeicher-Inspektion der HTW vor.
Wem das alles zu kompliziert ist, zieht vielleicht eine persönliche Beratung vor. Dabei ist es sicher besser, wenn das Fachunternehmen nicht auch ein wirtschaftliches Interesse an der Ausführung hat. Bei der Anschaffung einer Solarbatterie muss mit Kosten von einigen tausend Euro gerechnet werden. Grund genug, die Entscheidung gut zu überlegen.
Fazit
Beim Kauf eines Energiespeichers ist die Angabe der Batteriekapazität entscheidend. Nur sie gibt an, wie viel Strom tatsächlich gespeichert und genutzt werden kann. Etwas mehr als der 1.000:1-Richtwert kann bei der Dimensionierung nicht schaden. Nicht empfehlenswert ist ein überdimensionierter Speicher, weil eine zu geringe Entladung sich negativ auf die Lebensdauer der Batterie auswirkt. Kleinere Batterien erreichen eine viel höhere Anzahl von Lade-Entlade-Zyklen und sind deshalb effizienter und wirtschaftlicher.
Autarkie mit Solarenergie
Autarkiegrad, Eigenverbrauchsquote und solarer Deckungsanteil bei Solarenergie Keine Rechnung mehr vom Strom- und Brennstofflieferanten? Ist das mit einer eigenen Solaranlage… weiterlesen